Integrated product design

Academic Year 2024/2025 - Teacher: Giovanna FARGIONE

Expected Learning Outcomes

OBJECTIVES / COURSE DESCRIPTION

The course aims to provide knowledge on the integrated development product philosophy (Integrated Product Development - IPD) that involves all major business functions. Will study approaches and methodologies aimed at improving the "process of development of new products or existing products mofiche" type adaptive design, design variation and original design.

The problems of the course ranging in all environments of the type designmechanic. They must be acquired the requirements for Design (DFM designfor Manufacturing) and installation (Design for Assembly, DFA or DXA) that It integrates the assembly optimization addresses the design requirements, and Ashby method for the selection of the materials in the design process.

Methodology Course structure predeve lectures, computer exercises on case studies using the CES the materials selection software, and the drafting of three projects that encompass the topics covered in the course.

Course Structure

The teaching is conditioned by a certain number of hours in which the theoretical topics of the course will be presented to the pupils, which are used to carry out the required projects.
In order to complete the design training path, the purpose of this teaching will be presented to the students of the applied examples. At the end of the first part of the program students will have to support a test in order to certify the degree of preparation achieved.
 

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.

Learning assessment may also be carried out on line, should the conditions require it.

Required Prerequisites

There are no prerequisites

Attendance of Lessons

Course attendance is required.

The student is required to attend at least 70% of the lessons of the course, cfr. Point 3.3 of the CLM Teaching Regulations in Management Engineering

Detailed Course Content

COURSE PLAN

Logic diagrams; The principle; the goal; The qualitative realization; schemes logical; The quantitative realization; positioning; constraint;

motion transmission; Transformation of motion; Theory of TRIZ; problem solving; inventive principles (Patent knowlegde); Axiomatic design; Creativity Templates; morphological forced connections; Closed-end, Open- end; Designing in total quality; Green Design; he assessment enviroment Impact;7the design process; Organization of staff; Strategy of continuous improvement; functional modeling of the articles; Principles of structural design; Failure prevention and evaluation of product; Sizing of components; design for environment aggressive; Modular design with wear products; Green Design; Echo design; Explanation and understanding of total; Examples ofdesign. Problem solving.

The development of new products; planning of new products; stages ofprocess development; identification of customer needs; the specifications ofproduct; of the product concept definition; the concept selection; Test of the concept; The product architecture; industrial design; modularity and integration; Standardization; prototyping; The House of Quality. Evolution of design and integrated design process; Introduction Design for X; Design for Assembly (the method of setting and development).

Types and properties of engineering materials; Choice of materials in the design process; Ashby method for the selection of materials (Selection of the kinds of problems, screening and ranking, performance indexes, form factors, processes of selection); Tools for the selection multi-target; Introduction to the use of the Cambridge Engineering Software

Selector (CES); Case studies.

Boothroyd & Dewhurst); Design for Manufacture (approach and tools).

Textbook Information

COURSE MATERIALS / BIBLIOGRAPHY

1.Metodi per la Progettazione Industriale, G.Biggioggero, E.Rovida; McGraw-Hill (consultation book)

2.Progettazione e sviluppo di prodotto, K.T.Ulrich, S.D.Eppinger, R. Filippini; (reference book)

McGraw-Hill

3. La scelta dei Materiali nella progettazione Industriale, Michael F. Aschby, Ambrosiana (consultation book)

4. Slide Course (reference book)

Course Planning

 SubjectsText References
1Metodi per la progettazione IndustrialeCap.1, Cap.2, Cap.3, Cap.4, Cap.5, Cap.6, Cap.7, Cap.8; Cap.9, Cap.10, Cap.11 del testo Product Design and development'', Ulrich Eppinger e slide del corso
2Progettazione e Sviluppo di ProdottoCap.1, Cap.2, Cap.3, Cap.4, Cap.5, Cap.6, Cap.7, Cap.8; Cap.9, Cap.10, Cap.11 testo Product Design and development'', Ulrich Eppinger e slide del corso
3Progettazione per Requisiti di Prodotto (design for X)Slide del corso
4Scelta Ottima dei MaterialiSlide del corso e Cap. 1, Cap.2, Cap.3, Cap.4, Cap.5, Cap.7,Cap16, Cap.17. Cap.9, Cap.15, del testoLa scelta dei Materiali nella progettazione Industriale, Michael F. Aschby, casa editrice Ambrosiana

Learning Assessment

Learning Assessment Procedures

Two tests in itinere during the course, an oral interview on the DFA and the project carried out.

Ongoing tests – open-ended questions on the contents of the course

For those who will not take the tests in itinere there is an oral exam on the contents of the course and on the project performed.

End-of-course tests – oral interview on the DFA and the project carried out.

It's necessary of Oral exam. Elements to be evaluated: relevance of the answers, quality of their contents, ability to connect with other topics within the program, ability to report examples, quality of technical language, and overall expressive ability.

To guarantee equal opportunities and in compliance with current laws, students can request a meeting in order to plan any compensatory and/or dispensatory measure, according to the educational goals and specific needs. In this case, it is advisable to contact the CInAP (Centre for Active and Participated Integration - Services for Disabilities and/or SLD) professor of the Department where the Degree Course is included

Examples of frequently asked questions and / or exercises

Triz theory

Product Architecture Design Path

Design for safety

Selection of materials

DFA

Ergonomic Design

Structural design: criteria

Methodologies to combat corrosion.

Primary and secondary functions.

Case studies of material selection.