Systems modelling and optimization
Academic Year 2025/2026 - Teacher: CARLO FAMOSOExpected Learning Outcomes
- Knowledge and understanding
Knowledge on modeling of linear systems and optimal and robust control techniques. Nonlinear modeling based on neural algorithms. Linear and nonlinear programming.
- Applied knowledge and understanding
Software tools to solve problems of modeling and optimization.
- Making judgements
The student will be able to autonomously determine the modeling technique more suitable on the basis of the features of the process under consideration. The student will be able to model problems of resource management in terms of liner and nonlinear programming.
- Communication skills
The student will develop the capability of interfacing with process engineers and with non-engineer personnel to model and solve resource management problems.
- Learning skills
The student will be able to discriminate among different programming and optimization problems. The student will be able to select the proper methods for their resolution.
Course Structure
Frontal lectures and Matlab based laboratory.
Required Prerequisites
Basic knowledge on linear systems, and linear algebra.
Attendance of Lessons
Detailed Course Content
Textbook Information
- 1. L. Fortuna, M. Frasca, A. Buscarino, Optimal and Robust Control - Advanced topics with MATLAB, CRC Press, 2021.
- 2. F. S. Hillier, G.J. Liebermann, Introduction to Operations Research, Ed. McGraw Hill, 11th edition, 2021.
- 3. S. Haykin, Neural Networks and Learning Machines, Pearson, 2016.
Author | Title | Publisher | Year | ISBN |
---|---|---|---|---|
L. Fortuna, M. Frasca, A. Buscarino | Optimal and Robust Control - Advanced topics with MATLAB | CRC Press | 2021 | 9781032053004 |
F. S. Hillier, G.J. Liebermann | Introduction to Operations Research | Ed. McGraw Hill, 11th edition | 2021 | 9781259872990 |
S. Haykin | Neural Networks and Learning Machines | Pearson | 2016 | 9789332570313 |
Course Planning
Subjects | Text References | |
---|---|---|
1 | Introduzione: Richiami di teoria dei sistemi (Prof. Buscarino) | Testo 1: Cap.1-2 |
2 | Concetti fondamentali e terminologia (Prof. Buscarino) | Testo 1: Cap 1-2 |
3 | Decomposizione ai valori singolari (Prof. Buscarino) | Testo 1: Cap 4 |
4 | Analisi alle componenti principali e Realizzazione bilanciata a catena aperta (Prof. Buscarino) | Testo 1: Cap 5 |
5 | Controllo Ottimo (Prof. Buscarino) | Testo 1: Cap 8 |
6 | Metodi di risoluzione di problemi di programmazione lineare (Prof. Famoso) | Testo 2: Cap 4-5 |
7 | Metodi di risoluzione di problemi di programmazione lineare (Prof. Famoso) | Testo 2: Cap 4-5 |
8 | Metodi di risoluzione di problemi di programmazione binaria e non lineare (Prof. Famoso) | Testo 2: Cap. 12-13 |
9 | Modellistica mediante reti neurali (Prof. Buscarino) | Testo 3 |
Learning Assessment
Learning Assessment Procedures
Examples of frequently asked questions and / or exercises
Proposing a model from time-series based on neural networks: open/closed loop balancing; optimal control; fundamental theoreme of linear programming; desing of the optimal control law ensuring given Hankel singular values and/or characteristic values; setting an optimization problem and solving it using the simplex method.