GEOMETRIA
Anno accademico 2016/2017 - 1° annoCrediti: 6
SSD: MAT/03 - GEOMETRIA
Organizzazione didattica: 150 ore d'impegno totale, 90 di studio individuale, 60 di lezione frontale
Semestre: 1°
Obiettivi formativi
L'obiettivo del corso è quello di fornire alcuni strumenti di Algebra Lineare per il calcolo di autovettori ed autovalori di un'applicazione lineare, quali ad esempio, le proprietà delle matrici. Si forniscono alcune nozioni di Geometria nel piano e nello spazio, ed alcuni strumenti per lo studi di coniche del piano e quadriche dello spazio.
Prerequisiti richiesti
I prerequisiti sono quelli richiesti per l’accesso al Corso di laurea.
Frequenza lezioni
Fortemente consigliata
Contenuti del corso
ALGEBRA LINEARE
- Operazioni su un insieme. Strutture algebriche: gruppi, anelli, corpi, campi. Anello degli interi relativi. Anello dei polinomi a coefficienti in un campo.
- Matrici ad elementi in un campo. Somma tra matrici. Gruppo abeliano delle matrici. Prodotto di uno scalare per una matrice. Prodotto tra matrici. Proprietà delle operazioni tra matrici. Anello delle matrici quadrate. Matrici triangolari, diagonali. Matrici trasposte. Matrici simmetriche ed antisimmetriche
- Spazi vettoriali e loro proprietà . Esempi: Kn, Km,n, K[X]. Sottospazi. Intersezione e somma di sottospazi. Somma diretta. Generatori di uno spazio. Spazi vettoriali finitamente generati. Dipendenza e indipendenza lineare. Criterio di indipendenza lineare. Base di uno spazio. Metodo degli scarti successivi. Completamento di un insieme libero ad una base. Lemma di Steinitz (no dim.). Dimensione di uno spazio vettoriale. Formula di Grassmann (no dim). Dimensione di una somma diretta.
- Determinante di una matrice quadrata e sue proprietà . Teorema di Binet. Primo e secondo teorema di Laplace (no dim). Matrici invertibili. Matrice aggiunta. Calcolo dell'inversa di una matrice. Rango di una matrice. Matrici ridotte e metodo di riduzione. Rango delle matrici ridotte. Teorema di Kronecker (no dim). Sistemi di equazioni lineari. Teorema di Rouchè-Capelli. Teorema di Cramer. Sistemi omogenei. Risoluzione dei sistemi lineari.
- Applicazioni lineari fra spazi vettoriali e loro proprietà . Il nucleo e l'immagine di una applicazione lineare. Iniettività, suriettività , isomorfismi. Teorema del Nucleo e dell' Immagine. Studio delle applicazioni lineari. Matrice del cambio di base. Matrici simili.
- Autovalori, autovettori ed autospazi di un endomorfismo. Calcolo degli autovalori: polinomio caratteristico. Autospazi e loro dimensione. Indipendenza degli autovettori. Endomorfismi diagonalizzabili e diagonalizzazione delle matrici.
GEOMETRIA ANALITICA
- I vettori geometrici dello spazio ordinario. Somma di vettori. Prodotto di un umero per un vettore. Prodotto scalare. Componenti dei vettori e operazioni mediante componenti.
- Sistemi di coordinate nel piano e nello spazio. Coordinate omogenee e punti impropri. Rette reali del piano e loro equazioni. Mutua posizione tra rette. Ortogonalità e parallelismo. Il coefficiente angolare di una retta. Fasci di rette. Distanze. I piani dello spazio ordinario. Le rette dello spazio e vari modi di rappresentarle. Ortogonalità e parallelismo. Rette complanari e rette sghembe. Fasci di piani. Distanze.
- Coniche nel piano e matrici ad esse associate. Invarianti ortogonali. Riduzione di una conica a forma canonica (no dim). Coniche riducibili e irriducibili. Significato geometrico del rango della matrice associata ad una conica. Classificazione delle coniche irriducibili. Studio delle coniche in forma canonica. Fuochi, direttrici ed eccentricità . Iperboli equilatere. Centro ed assi di simmetria. Circonferenze. Fasci di coniche.
- Le quadriche e matrici ad esse associate. Quadriche riducibili e irriducibili. Vertici delle quadriche e quadriche degeneri. Coni e cilindri. Invarianti ortogonali. Ellissoidi, iperboloidi e paraboloidi.
Testi di riferimento
1) S. Giuffrida, A.Ragusa, Corso di Algebra Lineare, Ed. Il Cigno G.Galilei, Roma 1998 (per la parte di Algebra Lineare).
2) G. Paxia, Lezioni di Geometria, Spazio Libri, Catania, 2005 (per la parte di geometria). Il presente libro, su volere dell'autore, è scaricabile dal sito internet del prof. G. Paxia www.giuseppepaxia.com
Programmazione del corso
* | Argomenti | Riferimenti testi | |
---|---|---|---|
1 | * | Determinante e rango di una matrice. Risoluzioni di sistemi lineari con i teoremi di Cramer e Rouchè-Capelli. Studio di un’applicazione lineare, calcolo di autovalori ed autovettori e degli spazi ad essi associati. | Testo 1) |
2 | * | Equazioni di rette nel piano, equazioni di rette e piani nello spazio e loro posizione reciproca, classificazione coniche, classificazione quadriche. | Testo 2) |
N.B. La conoscenza degli argomenti contrassegnati con l'asterisco è condizione necessaria ma non sufficiente per il superamento dell'esame. Rispondere in maniera sufficiente o anche più che sufficiente alle domande su tali argomenti non assicura, pertanto, il superamento dell'esame.
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
a) Verifica durante il corso: Periodicamente, durante le esercitazioni gli studenti potranno essere invitati a partecipare risolvendo alla lavagna degli esercizi proposti dal docente o dagli studenti stessi. Questo risulta utile per monitorare il livello di apprendimento degli studenti. Durante le lezioni, inoltre, gli studenti saranno invitati a citare definizioni e risultati trattati nelle lezioni precedenti, per favorire un apprendimento consapevole della disciplina. Durante le ore di attività integrative pomeridiane saranno svolte delle esercitazioni utili all’autovalutazione.
b) esame finale: l'esame finale consiste in una prova scritta ed una orale alla fine del corso. Per il superamento della prova scritta, lo studente dovrà svolgere almeno due quesiti di Algebra Lineare ed uno di Geometria (o viceversa). Sono sconsigliati dal presentarsi alla prova orale i candidati che riportano una votazione inferiore a 12/30 nella prova scritta. La prova scritta prevede la risoluzione di alcuni esercizi, tecnici e dimostrativi. La prova orale è mirata particolarmente a verificare la chiarezza espositiva e la capacità di collegare fra loro diversi argomenti del programma.
d) criteri per l’attribuzione del voto: si terrà conto: della chiarezza espositiva, della completezza delle conoscenze, della capacità di collegare diversi argomenti. Si terrà in ogni caso conto, soprattutto nei primi appelli, del fatto che lo studente frequenta ancora il primo anno e difficilmente avrà acquisito la maturità che potrà essere invece richiesta negli anni successivi.
Esempi di domande e/o esercizi frequenti
1 Definizione di spazio vettoriale. Teorema sulle dimensioni di Nucleo ed Immagine di un’applicazione lineare. Teorema di Cramer e Rouchè-Capelli. Criterio di indipendenza lineare. Criterio di indipendenza degli autospazi, molteplicità algebrica e geometrica, endomorfismi semplici. Sudio di un'applicazione lineare. Studio della semplicità di un endomorfismo. Controimmagine di un vettore
2) Rette e piani nello spazio. Classificazione coniche. Costruzione e studio di fasci di coniche. Classificazione quadriche. Vertici. Costruzioni di coni e cilindri. Studio di un fascio di quadriche.